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Abstract

This contribution describes the mathematical and numerical possibility to analyse heterogeneous data, e.g. experimental intensity data

measured for many crystallographic but few sample directions, adaptively re®ned high resolution intensity data, or a mixture of diffraction

intensity data and individual orientation data from scanning electron microscopy.

These possibilities are put forward within the dual approach to texture analysis provided by the differential equation governing pole

®gures. The general solution of this differential equation is represented both in terms of spherical harmonics or characteristics. The resulting

systems of equations are capable of considering such heterogeneous data as mentioned above.

The eventual aim of this contribution is to show that (i) the mostly tacit `paradigm' of texture analysis that additional pole ®gures can be

calculated from experimental pole ®gures only by using a detour via the ODF is not correct, and (ii) any function satisfying the differential

equation governing pole ®gures is the actual pole ®gure projection, or X-ray transform, of a common function de®ned in a higher dimensional

space.

Summarily, it is shown that the two dual approaches to texture analysis provided by the projection formula or the differential equation are

equivalent, but put emphasis on different issues of the same problem. q 2000 Elsevier Science Ltd. All rights reserved.

1. Hyperspherical X-ray transforms, pole ®gures

The analysis of preferred crystallographic orientation is

referred to as texture analysis. A probability density

function f(g) de®ned on the group SO(3) of rotations or a

subset G of SO(3) depending on the crystal symmetry,

respectively, is referred to as orientation density function

(ODF) describing the distribution of crystallographic orien-

tations by volume. While orientation density functions may

be mathematically determined from individual orientation

measurements directly in some applications, they are not

generally directly accessible in many other applications.

In these applications it is common practice to measure

diffraction pole ®gures of a few crystallographic forms h.

An introduction to texture analysis with special emphasis on

geological applications is given by Wenk (1985).

A diffraction pole ®gure is mathematically represented as

the projection of an orientation density function f :SO�3� 7!
IR1

1 basically provided by the integral operator

�Ph f ��r� � 1

2p

Z
{g[SO�3�jh�gr}

f �g� d v�g� � P�h; r� �1�

where the function P�h; r�: S2 £ S2 7! IR1
1 for a given crys-

tallographic direction h [ S2 , IR3 may be referred to as

hyperspherical X-ray transform of f with respect to h.

The path of integration
�
g [ SO�3���h � gr

	
in Eq. (1) is a

circle restricted to the three-dimensional sphere S3 , IR4

(Schaeben, 1996).

Next, for reasons originating in crystallography and

Friedel's empirical law, which states that the diffracting

X-ray cannot distinguish between top and bottom of the

lattice planes, i.e. the directions h and 2h cannot be distin-

guished in the diffraction experiment even if the crystal

itself is not centrosymmetric, the basic crystallographic

X-ray transform is de®ned as

� ~Ph f ��r� � 1
2
�P�h; r�1 P�2h; r�� � ~P�h; r� �2�

Now, obviously,

~P�h; r� � ~P�2h; r� � ~P�h;2r� �3�
that is, ~P is an even function in both arguments h; r [ S2,

and therefore the operator of Eq. (2) maps essentially from

SO(3) (equivalent to S4
1) onto the cross-product S2

1 £ S2
1 of

two upper hemispheres, or equivalently from the projective

space H3 to the cross-product space H2 £ H2 of projective

planes.
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For a crystallographic orientation density function

f [ C2�SO�3��, its corresponding crystallographic h pole

®gure ~Ph of the crystal form h � �
hm

��m � 1; :::;Mh

	
, S2

of multiplicity Mh corresponding to crystal-symmetrically

equivalent lattice planes
�ÿ

hkl
�
m

��m � 1; :::;Mh

	
, Z3 is

de®ned for r [ S2 as

~Ph r� � � � ~Ph f ��r� � 1

Mh

XMh

m�1

P hm; r
ÿ � �4�

such that

Z
S2

1

~Ph r� � d s r� � � 1

when

Z
SO�3�

f �g� d v�g� � 1

Summation in Eq. (4) is effectively over all directions

gBh; 2gBh; gB [ GB, which are symmetrically equiva-

lent with respect to the associated Laue group ~GB.

Eventually,

~Ph f
ÿ �

r� � � 1

#GB

X
gBj

[GB

~P gBj
h; r

� �
� ~P�h; r� �5�

where h denotes the set of symmetrically equivalent cystal-

lographic directions hm related to each other by the asso-

ciated Laue group, and h denotes an arbitrary element of h.

Thus, ~Ph

ÿ
r
�

and ~P�h; r� will no longer be distinguished.

In the past, main interest of texture analysis was focused

on the inverse problem to ®nd a reasonable orientation

density function conforming with given intensity data corre-

sponding to pole ®gures of some crystal forms. In a strict

mathematical sense a general solution of this problem does

not exist because crystallographic pole density functions

provide too little information due to their evenness.

However, for practical purposes several methods exist to

resolve the problem in sensible ways. From a mathematical

point of view, all known methods have some heuristics in

common.

It was not appreciated that pole ®gures are rather complex

mathematical entities governed by a differential equation of

ultrahyperbolic or Darboux type, respectively. Conven-

tional texture analysis did not pay any attention to this

more sophisticated property; on the contrary, only recently

it was declared as being useless (Matthies and Esling, 1998);

however, their polemic is erroneous (cf. Nikolayev and

Schaeben, 1999). Pursuing the approach by the differential

equation governing spherical X-ray transforms provides

the means (i) to construct a dual form of texture analysis

and (ii) to establish a complete analogy to mathematical

tomography.

2. The ultrahyperbolic differential equation of texture
goniometry

The conventional notation ~Ph

ÿ
r
�

of texture analysis was

dropped in favour of ~P�h; r� to emphasize its features of a

general axis probability density function (`allgemeine

Achsenverteilungsfunktion' ~A�h; r�, Bunge, 1982, p. 53)

as follows.

Let D denote the Laplace±Beltrami operator, and assume

f [ C2
ÿ
SO�3�� and hence P [ C2

ÿ
S2 £ S2

�
. Then

Dh 2 Dr

ÿ �
P h; r� � � 0 �6�

where the equality is directly derived from the de®nition,

Eq. (1) by simultaneously substituting h,r,g by r,h,g21, and

in particular without reference to harmonic functions and

their properties. It is referred to as ultrahyperbolic differen-

tial equation in mathematical physics (cf. John, 1938; Cour-

ant and Hilbert, 1953), or Darboux partial differential

equation in tomography (cf. Helgason, 1984). In texture

goniometry it was ®rst noticed by Savelova (1982).

In complete analogy to (i) Fourier's harmonic method and

(ii) d'Alembert's method of characteristics to solve an

ordinary hyperbolic differential equation, e.g. to solve the

Cauchy problem of mathematical physics (cf. Butzer and

Nessel, 1971), the general solution of the ultrahyperbolic

differential equation for hyperspherical X-ray transforms

is obtained both in terms of (i) spherical harmonics and

(ii) its characteristics.

The general solution of Eq. (6) in terms of harmonics is

P h; r� � �
X1
l�0

Xl

m�2 l

Xl

m 0�2 l

C mm 0
l �Y m

l �*�h�Y m 0
l �r� �7�

(Nikolayev and Schaeben, 1999).

Physical requirements like non-negativity, evenness,

crystallographic or sample symmetries impose additional

constraints on the system Eq. (7) and lead to special

solutions.

The special case of considering h as constant leads to pole

®gures

P�h; r� � Ph�r� �
X1
l�0

Xl

m 0�2 l

F m 0
l �h�Y m 0

l �r� �8�

with

F m 0
l �h� �

Xl

m�2 l

C mm 0
l �Y m

l �*�h� �9�

The C-coef®cients are calculated by inversion of Eq. (9),

where the F-coef®cients are provided by

F m 0
l �h� �

Z
S 2

P�h; r�Y m 0
l *�r� d s�r� �10�

if the right-hand side of Eq. (10) is accessible in some way.

The special case of considering r as constant leads to
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analogous results with respect to inverse pole ®gures and

their H-coef®cients, respectively.

If accessible, F-coef®cients are convenient, e.g. with

respect to limited central memory for actual computations.

In practical X-ray diffraction goniometry, they have never

been accessible without additional provisions, because their

numerical determination according to Eq. (10) requires

completely measured pole ®gures. However, it is not

possible to measure a complete pole ®gure in re¯ection

nor in transmission mode of the texture goniometer. A

complete experimental pole ®gure can be obtained by

combining the intensity values of both modes, or by

combining intensity values measured for three perpendicu-

lar surfaces of the specimen in one mode. In both cases,

intensity data of different origin have to be ®tted, which is

apparently simple, but often leads to unacceptable results in

practice.

Therefore, and since F-coef®cients were believed to be an

indispensable prerequisite of texture analysis from the

projection point of view, Eqs. (1) and (2), they are numeri-

cally determined by a least-squares ®t of a harmonic series

of ®xed maximum expansion degree Lmax (cf. Bunge and

Esling, 1985, p. 116). Unfortunately, when determined in

this way, they depend on Lmax, thus losing their charac-

teristic properties by de®nition Eq. (10) essential for

orthogonal series expansion, and destroying the mathema-

tical elegance of the harmonic approach.

Since the `true' F-coef®cients of experimental X-ray

diffraction pole density functions are not accessible, the

general solution, Eq. (7), applies, which relates C-coef®-

cients directly to experimental intensities, e.g. if they are

measured for many crystallographic but few sample

directions.

Thus, F-coef®cients have actually never been accessible

in X-ray practice, but they are not generally required either.

Therefore, they are obsolete from the complementary point

of view provided by the differential Eq. (6).

The system of Eq. (7), may be augmented with

C mm 0
l � 1

vol�B�
XN
k�1

vol�Bk�Dmm 0
l �gk� �11�

where gk denotes the individual orientation of the kth grain

with volume vol(Bk), and Dmm 0
l denote the generalized

spherical harmonics.

It is emphasized that Eq. (7) can be used to approximate

additional pole ®gures directly from experimental intensity

data. At the same time, the coef®cients of the solution, Eq.

(7), are the harmonic coef®cients of the function being

transformed (cf. Bunge, 1982, p. 53).

That is, any function satisfying a differential Eq. (6) can

be shown to be the X-ray transform of a function under mild

mathematical assumptions. More speci®cally, for any func-

tion u [ C 1ÿS2 £ S2
�

satisfying the differential Eq. (6),

there exists a unique function f [ C 1ÿSO�3�� such that

Ph f � u (Nikolayev and Schaeben, 1999).

It should be noted that if u [ C1ÿS2 £ S2
�

satisfying Eq.

(6) is even in both arguments, then a unique even function

f [ C 1ÿSO�3�� exists such that Ph f � u. Since the crystal-

lographic X-ray transforms of f are always even, uniqueness

is con®ned to the even part of f under the crystallographic

X-ray transform, i.e. only the even part of f is uniquely

determined.

It follows that the statement that this common property

of true pole ®gures Ph(y) in no way follows from Eq. (6)

or any transformed variants of it without additional infor-

mation (Matthies and Esling, 1998, p. 214), is proven to

be false, and so are its numerous paraphrases throughout

their paper.

Thus, the coef®cients of the solution, Eq. (7), of the differ-

ential equation for spherical X-ray transforms in terms of

harmonics are the harmonic coef®cients of the function

being transformed, i.e. the solution of the differential equa-

tion provides the solution of the inverse X-ray transform

problem. Whenever it is possible to determine the even

part of an orientation density function conforming with

given crystallographic pole ®gures of some crystal forms,

then it is possible to determine directly the pole ®gure of any

other crystal form, and vice versa. This possibility to solve a

differential equation instead of an inverse transform

problem has already been shown elsewhere. In particular,

this duality may be exploited to improve on the convention-

ally obtained harmonic solution of the inverse problem of

texture analysis.

Any function u�h; r� [ C2�S2 £ S2� which depends on the

dot product h´r � cos h only obviously satis®es the differ-

ential Eq. (6). Furthermore, an appropriate linear transfor-

mation of h or r, respectively, with constant coef®cients

should not change this situation. Consequently, the charac-

teristics of the ultrahyperbolic differential equation are the

®bres h´gr � const:, where g is an arbitrary proper rotation

of SO(3).

The general solution of Eq. (6) in terms of characteristics

can be represented as

u�h; r� �
X

l

X
k

ul�h´gkr� �12�

where gk [ SO�3� are arbitrary rotations and ul [ C 2�IR1�
are some real twice differentiable functions (Nikolayev and

Schaeben, 1999).

A speci®c solution is constructed analogously to d'Alem-

bert's method of characteristics by choosing distinguished

functions pl for the functions ul and ®tting them to the initi-

ally given pole density ®gures, where the pl belong to some

speci®c dense subset of C 2�IR1�, e.g. polynomials, splines,

wavelets or radial basis functions.

In a particularly simple case, a twice continuously differ-

entiable function u satisfying Eq. (6) is considered, which

reduces to a function of h´g0r for some arbitrary ®xed

g0 [ SO�3�. Then u is uniquely determined provided for

some given h0 [ S2 it is known for all g0r on a great circle

containing h0 (Nikolayev and Schaeben, 1999).
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With respect to practical texture analysis these assump-

tions may appear rather arti®cial; nevertheless, this propo-

sition is the basis of texture component ®t methods (cf.

Helming and Eschner, 1990; Schaeben, 1996). Moreover,

the approach by characteristics can be greatly generalized to

high resolution or multiresolution texture analysis.

It can generally be shown that a series expansion into

appropriately chosen functions pl is equivalent to the series

expansion into spherical harmonics. Since any continuously

differentiable function on the sphere S2 can be expanded

into an absolutely convergent series of spherical harmonics,

there exists an equivalent expansion into linear combina-

tions of speci®ed spherical harmonics, the argument of

which is the scalar product of h and r (cf. Freeden et al.,

1998). This expansion provides the means to represent any

pole density function in the form of Eq. (12).

For a more complete discussion on the subject including

proofs the reader is referred to Nikolayev and Schaeben

(1999).

3. Conclusions

It is shown that the approaches to texture analysis

provided by the projection formula or the differential equa-

tion are equivalent, but put emphasis on different issues of

the same problem. The possibility of applying a differential

equation instead of an inverse tomographic problem has

already been shown earlier, e.g. Bukhgeim (1988) and

Patch (1998).

The latter approach provides a complementary and

refreshing point of view and clearly reveals that the duality

may be exploited to generalize and improve the conven-

tional methods of texture analysis.

Eventually, it is shown that the basic statements by

Matthies and Esling (1998) comprise an informal way to

discuss the existence and uniqueness of the differential

equation and that their arguments are essentially wrongÐ

rather expressing personal opinions than mathematical

facts. In particular, it is concluded that whenever it is possi-

ble to calculate a reasonable approximate of the even

portion of an orientation density function conforming with

experimental diffraction pole ®gures of given crystal forms,

then it is possible to determine reasonable approximates of

the pole ®gures of any other crystal form directly from the

given ones, and vice versa.
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